Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(1): 361-376, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334232

RESUMO

BACKGROUND: Peach (Prunus persica L.) is prone to chilling injury as exhibited by inhibition of the ethylene production, failure in softening, and the manifestation of internal browning. The basic leucine zipper (bZIP) transcription factors play an essential role in regulatory networks that control many processes associated with physiological, abiotic and biotic stress responses in fruits. Formerly, the underlying molecular and regulatory mechanism of (bZIP) transcription factors responsive to chilling injury in peach fruit is still elusive. METHODS AND RESULTS: In the current experiment, the solute peach 'Zhongyou Peach No. 13' was used as the test material and cold storage at low temperature (4 °C). It was found that long-term low-temperature storage induced the production of ethylene, the hardness of the pulp decreased, and the low temperature also induced ABA accumulation. The changes of ABA and ethylene in peach fruits during low-temperature storage were clarified. Since the bZIP transcription factor is involved in the regulation of downstream pathways of ABA signals, 47 peach bZIP transcription factor family genes were identified through bioinformatics analysis. Further based on RT-qPCR analysis, 18 PpbZIP genes were discovered to be expressed in refrigerated peach fruits. Among them, the expression of PpbZIP23 and PpbZIP25 was significantly reduced during the refrigeration process, the promoter analysis of these genes found that this region contains the MYC/MYB/ABRES binding element, but not the DRES/CBFS element, indicating that the expression may be regulated by the ABA-dependent cold induction pathway, thereby responding to chilling injury in peach fruit. CONCLUSIONS: Over investigation will provide new insights for further postharvest protocols related to molecular changes during cold storage and will prove a better cope for chilling injury.


Assuntos
Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Frutas/metabolismo , Zíper de Leucina , Etilenos/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/genética
2.
Plant Dis ; 107(3): 908-910, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36265153

RESUMO

Peach soft rot caused by Gilbertella persicaria is an economically important disease. Here, we report a high-quality complete and annotated genome sequence of G. persicaria strain TFLB-J, isolated from peach fruit in Yuanyang county of Henan Province, China. The assembly consists of 91 scaffolds with an estimated genome size of 33.59 Mb and N50 length of 0.92 Mb, encoding 13,296 predicted protein-coding genes. The whole-genome sequence could provide gene resources for further study of pathogenic effectors and comparative genomics of peach soft rot pathogens.


Assuntos
Mucorales , Prunus persica , Prunus persica/genética , Genômica , China
3.
BMC Plant Biol ; 22(1): 459, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153492

RESUMO

BACKGROUND: Fruit tree yield and fruit quality are affected by the tree's growth type, and branching angle is an important agronomic trait of fruit trees, which largely determines the crown structure. The weeping type of peach tree shows good ventilation and light transmission; therefore, it is commonly cultivated. However, there is no molecular marker closely linked with peach weeping traits for target gene screening and assisted breeding. RESULTS: First, we confirmed that the peach weeping trait is a recessive trait controlled by a single gene by constructing segregating populations. Based on BSA-seq, we mapped the gene controlling this trait within 159 kb of physical distance on chromosome 3. We found a 35 bp deletion in the candidate area in standard type, which was not lacking in weeping type. For histological assessments, different types of branches were sliced and examined, showing fiber bundles in the secondary xylem of ordinary branches but not in weeping branches. CONCLUSIONS: This study established a molecular marker that is firmly linked to weeping trait. This marker can be used for the selection of parents in the breeding process and the early screening of hybrid offspring to shorten the breeding cycle. Moreover, we preliminary explored histological differences between growth types. These results lay the groundwork for a better understanding of the weeping growth habit of peach trees.


Assuntos
Prunus persica , Frutas/genética , Fenótipo , Melhoramento Vegetal , Prunus persica/genética
4.
Plant Physiol Biochem ; 185: 378-389, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35777129

RESUMO

Ethylene plays a critical role in peach (Prunus persica) fruit ripening; however, the molecular mechanism underlying ethylene-mediated aroma biosynthesis remains unclear. Here, we compared the difference in aroma-related volatiles and gene expression levels between melting-flesh (MF) and stony hard (SH) peach cultivars at S3, S4 I, S4 II, S4 III stages, and explored the relation between volatile biosynthesis related genes and ethylene response factor (ERF) genes. The concentration of fruity aromatic compounds such as lactones and terpenes increased significantly in MF peach during fruit ripening, while it was nearly undetectable in SH peach. LOX4 and FAD1 genes expressed concomitantly with ethylene emission and significantly downregulated by 1-MCP. Besides, 1-MCP treatment could sharply influence the fruity aromatic compounds, suggesting that these genes play key roles in volatile biosynthesis during fruit ripening. Furthermore, PpERF5 and PpERF7 could bind together to form a protein complex that enhanced the transcription of LOX4 more than each transcription factor individually. Overall, this work provides new insights into the transcriptional regulatory mechanisms associated with aroma formation during peach fruit ripening.


Assuntos
Prunus persica , Etilenos/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Lactonas/metabolismo , Odorantes , Prunus persica/genética , Prunus persica/metabolismo
5.
J Exp Bot ; 73(5): 1357-1369, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35022695

RESUMO

The green peach aphid (GPA), Myzus persicae, is a polyphagous, sap-sucking aphid and a vector of many plant viruses. In peach, Prunus persica, three individual dominant GPA resistance loci have been genetically defined (Rm1-3), but knowledge of the underlying genes is limited. In this study, we focused on the Rm3 locus. Bulk segregant analysis (BSA) mapping in segregating progeny populations delimited Rm3 to an interval spanning 160 kb containing 21 genes on chromosome 1. RNA-seq data provided no evidence of candidate genes, but chromosomal structural variations were predicted around a nucleotide-binding site-leucine-rich repeat (NLR) gene (ppa000596m) within the Rm3 fine-mapping interval. Following bacterial artificial chromosome (BAC) library construction for a GPA-resistant peach cultivar and the sequencing of three target BAC clones, a chromosomal structural variation encompassing two novel TIR-NLR-class disease resistance (R) protein-coding genes was identified, and the expressed NLR gene (NLR1) was identified as a candidate for M. persicae resistance. Consistent with its proposed role in controlling GPA resistance, NLR1 was only expressed in the leaves of resistant peach phenotypes. A molecular marker that was designed based on the NLR1 sequence co-segregated with the GPA-resistant phenotype in four segregating populations, 162 peach cultivars, and 14 wild relatives, demonstrating the dominant inheritance of the Rm3 locus. Our findings can be exploited to facilitate future breeding for GPA-resistance in peach.


Assuntos
Afídeos , Prunus persica/genética , Animais , Resistência à Doença/genética , Genes de Plantas , Insetos Vetores , Fenótipo , Melhoramento Vegetal , Folhas de Planta
6.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768737

RESUMO

Stony hard (SH) peach (Prunus persica L. Batsch) fruit does not release ethylene and has very firm and crisp flesh at ripening, both on- and off-tree. Long-term cold storage can induce ethylene production and a serious risk of chilling injury in SH peach fruit; however, the regulatory mechanism underlying ethylene production in stony hard peach is relatively unclear. In this study, we analyzed the phytohormone levels, fruit firmness, transcriptome, and lipidome changes in SH peach 'Zhongtao 9' (CP9) during cold storage (4 °C). The expression level of the ethylene biosynthesis gene PpACS1 and the content of ethylene in SH peach fruit were found to be upregulated during cold storage. A peak in ABA release was observed before the release of ethylene and the genes involved in ABA biosynthesis and degradation, such as zeaxanthin epoxidase (ZEP) and 8'-hydroxylase (CYP707A) genes, were specifically induced in response to low temperatures. Fruit firmness decreased fairly slowly during the first 20 d of refrigeration, followed by a sharp decline. Furthermore, the expression level of genes encoding cell wall metabolic enzymes, such as polygalacturonase, pectin methylesterase, expansin, galactosidase, and ß-galactosidase, were upregulated only upon refrigeration, as correlated with the decrease in fruit firmness. Lipids belonging to 23 sub-classes underwent differential rearrangement during cold storage, especially ceramide (Cer), monoglycosylceramide (CerG1), phosphatidic acid (PA), and diacyglyceride (DG), which may eventually lead to ethylene production. Exogenous PC treatment provoked a higher rate of ethylene production. We suspected that the abnormal metabolism of ABA and cell membrane lipids promotes the production of ethylene under low temperature conditions, causing the fruit to soften. In addition, ERF transcription factors also play an important role in regulating lipid, hormone, and cell wall metabolism during long-term cold storage. Overall, the results of this study give us a deeper understanding of the molecular mechanism of ethylene biosynthesis during the postharvest storage of SH peach fruit under low-temperature conditions.


Assuntos
Etilenos/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Coenzima A Ligases/genética , Temperatura Baixa , Sistema Enzimático do Citocromo P-450/genética , Armazenamento de Alimentos/métodos , Frutas/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Zeaxantinas/genética
7.
Plant Sci ; 313: 111084, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763869

RESUMO

The signaling pathways of both auxin and ethylene regulate peach fruit ripening via the Aux/IAA and ERF transcription factors, respectively. However, the molecular mechanisms that coordinate both auxin and ethylene signals during peach fruit ripening remain unclear. In this study, we show that PpIAA1 and PpERF4 act as key players in a positive feedback loop, and promote peach fruit ripening by directly binding to and enhancing the activity of target gene promoters. PpIAA1 increased the expression of the ethylene biosynthesis gene PpACS1. Furthermore, PpERF4 enhanced the transcription of PpACO1 and PpIAA1 genes by binding to their promoters. Additionally, PpIAA1 and PpERF4 bound to each other to form a complex, which then enhanced the transcription of abscisic acid biosynthesis genes (PpNCED2 and PpNCED3) and the fruit softening gene (PpPG1) to levels higher than those achieved by each transcription factor individually. Moreover, overexpression of PpIAA1 in tomato accelerated fruit ripening and shortened the fruit shelf-life by increasing the production of ethylene and the expression levels of ripening regulator genes. Collectively, these results advance our understanding of the molecular mechanisms underlying peach fruit ripening and softening via auxin and ethylene signaling pathways.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Prunus persica/crescimento & desenvolvimento , Prunus persica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas
8.
Plants (Basel) ; 10(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34371636

RESUMO

The fruit skin pubescence of Prunus persica is an economically important characteristic and comprises the classification criteria. The mapping and identification of a complete linkage marker to the fruit skin trichome trait locus of peach fruit are critical for the molecular marker-assisted selection for peach/nectarine. In this study, the BC1 population was constructed from the parents "Zhongyou No. 4", the recurrent parent, and "Baihuashanbitao", the non-recurrent parent. Based on the 38 BC1 individuals' phenotypes and their genotyping using next-generation sequencing, the G (Glabrous skin) locus of the gene was first identified between 14.099 and 16.721 Mb on chromosome 5. Using other individuals of this population, the gene was fine-mapped in the range of 481 kb with SNP markers. Based on the resequencing data of other cultivars (lines), the candidate SNP in the gene Prupe.5G196400 was obtained. Subsequently, the SNP marker was designed and applied to natural and hybrid peach populations. Via genotyping analysis, we confirmed co-segregation between the peach/nectarine phenotype, which was used in the identification of peach or nectarine with 100% accuracy.

9.
Plant J ; 107(5): 1320-1331, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33964100

RESUMO

Flower and fruit colors are important agronomic traits. To date, there is no forward genetic evidence that the glutathione S-transferase (GST) gene is responsible for the white flower color in peach (Prunus persica). In this study, genetic analysis indicated that the white-flower trait is monogenetic, is recessive to the non-white allele, and shows pleiotropic effects with non-white-flowered types. The genetic locus underpinning this trait was mapped onto chromosome 3 between 0.421951 and 3.227115 Mb by using bulked segregant analysis in conjunction with whole-genome sequencing, and was further mapped between 0 and 1.178149 Mb by using the backcross 1 (BC1 ) population. Finally, the locus was fine-mapped within 535.974- and 552.027-kb intervals by using 151 F2 individuals and 75 individuals from a BC1 self-pollinated (BC1 S1 ) population, respectively. Pp3G013600, encoding a GST that is known to transport anthocyanin, was identified within the mapping interval. The analysis of genome sequence data showed Pp3G013600 in white flowers has a 2-bp insertion or a 5-bp deletion in the third exon. These variants likely render the GST non-functional because of early stop codons that reduce the protein length from 215 amino acids to 167 and 175 amino acids, respectively. Genetic markers based on these variants validated a complete correlation between the GST loss-of-function alleles and white flower in 128 peach accessions. This correlation was further confirmed by silencing of Pp3G013600 using virus-induced gene silencing technology, which reduced anthocyanin accumulation in peach fruit. The new knowledge from this study is useful for designing peach breeding programs to generate cultivars with white flower and fruit skin.


Assuntos
Antocianinas/metabolismo , Genoma de Planta/genética , Glutationa Transferase/metabolismo , Prunus persica/genética , Alelos , Mapeamento Cromossômico , Flores/genética , Flores/metabolismo , Frutas/genética , Frutas/metabolismo , Loci Gênicos/genética , Glutationa Transferase/genética , Mutação com Perda de Função , Fenótipo , Pigmentos Biológicos , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus persica/metabolismo , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
10.
Front Plant Sci ; 12: 655758, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054901

RESUMO

Auxin and ethylene play critical roles in the ripening of peach (Prunus persica) fruit; however, the interaction between these two phytohormones is complex and not fully understood. Here, we isolated a peach ILR gene, PpILR1, which encodes an indole-3-acetic acid (IAA)-amino hydrolase. Functional analyses revealed that PpILR1 acts as a transcriptional activator of 1-amino cyclopropane-1-carboxylic acid synthase (PpACS1), and hydrolyzes auxin substrates to release free auxin. When Cys137 was changed to Ser137, PpILR1 failed to show hydrolase activity but continued to function as a transcriptional activator of PpACS1 in tobacco and peach transient expression assays. Furthermore, transgenic tomato plants overexpressing PpILR1 exhibited ethylene- and strigolactone-related phenotypes, including premature pedicel abscission, leaf and petiole epinasty, and advanced fruit ripening, which are consistent with increased expression of genes involved in ethylene biosynthesis and fruit ripening, as well as suppression of branching and growth of internodes (related to strigolactone biosynthesis). Collectively, these results provide novel insights into the role of IAA-amino acid hydrolases in plants, and position the PpILR1 protein at the junction of auxin and ethylene pathways during peach fruit ripening. These results could have substantial implications on peach fruit cultivation and storage in the future.

11.
Front Integr Neurosci ; 15: 742377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153686

RESUMO

INTRODUCTION: The extracellular deposition of ß-amyloid (Aß) is a pathological hallmark in Alzheimer's disease (AD), which induces microglial activation in the pathology of AD. The expression of serine/threonine-protein kinase 2 (SRPK2) is increased in the brain tissues of patients with AD. In this study, we examined the effect of SRPK2 in the activation of microglia. METHODS: Microglia (BV2) cells were cultured and the expression of SRPK2 was enhanced by transfection of SRPK2 recombinant vectors or knockdown by SRPK2 small interfering RNA (siRNA). The cells were stimulated by lipopolysaccharide (LPS) + interferon-γ (IFN-γ) or Aß in vitro, generating inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin (IL)-10, and IL-6], which were investigated by real-time quantitative PCR (qPCR) and ELISA. The proliferation ability of the BV2 cells with/without SRPK2 expression was evaluated by WST-1 under pressure in the presence of Aß. The effects of SRPK2 on microglia polarization were evaluated by investigating the expression of CD16/32 and CD206 by western blot and the expression of ionized calcium-binding adapter molecule-1 (IBA-1) and arginase-1 (Arg-1) by immunofluorescence. Hippocampal cells HT-22 were cultured with a BV2 cell (with/without SRPK2 expression)-derived medium stimulated by Aß or LPS + IFN-γ, prior to the evaluation of HT-22 cytotoxicity by assessment of cell viability. Possible relationships between Akt and SRPK2 in the BV2 cells were investigated by western blot. RESULTS: The expression of SRPK2 was related to the phenotype polarization changes of microglia with increased expression of CD16/32 and IBA-1. The expression of proinflammatory cytokines IL-6 and TNF-α was increased, whereas the expression of anti-inflammatory cytokine IL-10 was decreased in the BV2 cells with SRPK2 overexpression. Moreover, with the expression enhancement of SRPK2, the BV2 cells had a higher proliferation rate. Aß treatment can promote SRPK2 expression in BV2 cells. Aß or LPS + IFN-γ promoted the production of cytokines IL-6 and TNF-α but decreased cytokine IL-10 in the BV2 cells. SRPK2 deficiency alleviated the cytotoxic effects of Aß or LPS + IFN-γ exposed microglia on HT22 cells. In addition, the activated Akt pathway promoted the expression of SRPK2 in the BV2 cells. CONCLUSION: Our data have found that enhanced SRPK2 expression contributed to the proinflammatory activation of microglia. Thus, SRPK2 may be a key modulating pathway of inflammatory mediators in AD pathology.

12.
Hortic Res ; 7: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194967

RESUMO

Peach (Prunus persica) is a typical climacteric fruit that produces ethylene rapidly during ripening, and its fruit softens quickly. Stony hard peach cultivars, however, do not produce large amounts of ethylene, and the fruit remains firm until fully ripe, thus differing from melting flesh peach cultivars. To identify the key proteins involved in peach fruit ripening, an antibody-based proteomic analysis was conducted. A mega-monoclonal antibody (mAb) library was generated and arrayed on a chip (mAbArray) at a high density, covering ~4950 different proteins of peach. Through the screening of peach fruit proteins with the mAbArray chip, differentially expressed proteins recognized by 1587 mAbs were identified, and 33 corresponding antigens were ultimately identified by immunoprecipitation and mass spectrometry. These proteins included not only important enzymes involved in ethylene biosynthesis, such as ACO1, SAHH, SAMS, and MetE, but also novel factors such as NUDT2. Furthermore, protein-protein interaction analysis identified a metabolon containing SAHH and MetE. By combining the antibody-based proteomic data with the transcriptomic and metabolic data, a mathematical model of ethylene biosynthesis in peach was constructed. Simulation results showed that MetE is an important regulator during peach ripening, partially through interaction with SAHH.

13.
Sci Adv ; 6(11): eaax2271, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32195335

RESUMO

Antibodies are essential for elucidating gene function. However, affordable technology for proteome-scale antibody generation does not exist. To address this, we developed Proteome Epitope Tag Antibody Library (PETAL) and its array. PETAL consists of 62,208 monoclonal antibodies (mAbs) against 15,199 peptides from diverse proteomes. PETAL harbors binders for a great multitude of proteins in nature due to antibody multispecificity, an intrinsic antibody feature. Distinctive combinations of 10,000 to 20,000 mAbs were found to target specific proteomes by array screening. Phenotype-specific mAb-protein pairs were found for maize and zebrafish samples. Immunofluorescence and flow cytometry mAbs for membrane proteins and chromatin immunoprecipitation-sequencing mAbs for transcription factors were identified from respective proteome-binding PETAL mAbs. Differential screening of cell surface proteomes of tumor and normal tissues identified internalizing tumor antigens for antibody-drug conjugates. By finding high-affinity mAbs at a fraction of current time and cost, PETAL enables proteome-scale antibody generation and target discovery.


Assuntos
Anticorpos Monoclonais Murinos/química , Epitopos/química , Proteoma/química , Células A549 , Animais , Células HEK293 , Células HL-60 , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células Jurkat , Células K562 , Células MCF-7 , Camundongos , Células PC-3 , Peptídeos , Células THP-1 , Células U937
14.
BMC Genomics ; 20(1): 892, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752682

RESUMO

BACKGROUND: Ubiquitin ligases (E3) are the enzymes in the ubiquitin/26S proteasome pathway responsible for targeting proteins to the degradation pathway and play major roles in multiple biological activities. However, the E3 family and their functions are yet to be identified in the fruit of peach. RESULTS: In this study, genome-wide identification, classification and characterization of the E3 ligase genes within the genome of peach (Prunus persica) was carried out. In total, 765 E3 (PpE3) ligase genes were identified in the peach genome. The PpE3 ligase genes were divided into eight subfamilies according to the presence of known functional domains. The RBX subfamily was not detected in peach. The PpE3 ligase genes were not randomly distributed among the 8 chromosomes, with a greater concentration on the longer chromosomes. The primary mode of gene duplication of the PpE3 ligase genes was dispersed gene duplication (DSD). Four subgroups of the BTB subfamily never characterized before were newly identified in peach, namely BTBAND, BTBBL, BTBP and BTBAN. The expression patterns of the identified E3 ligase genes in two peach varieties that display different types of fruit softening (melting flesh, MF, and stony hard, SH) were analyzed at 4 different stages of ripening using Illumina technology. Among the 765 PpE3 ligase genes, 515 (67.3%) were expressed (FPKM > 1) in the fruit of either MF or SH during fruit ripening. In same-stage comparisons, 231 differentially expressed genes (DEGs) were identified between the two peach cultivars. The number of DEGs in each subfamily varied. Most DEGs were members of the BTB, F-box, U-box and RING subfamilies. PpE3 ligase genes predicted to be involved in ethylene, auxin, or ABA synthesis or signaling and DNA methylation were differentially regulated. Eight PpE3 ligase genes with possible roles in peach flesh texture and fruit ripening were discussed. CONCLUSIONS: The results of this study provide useful information for further understanding the functional roles of the ubiquitin ligase genes in peach. The findings also provide the first clues that E3 ligase genes may function in the regulation of peach ripening.


Assuntos
Frutas/enzimologia , Frutas/genética , Prunus persica/enzimologia , Prunus persica/genética , Ubiquitina-Proteína Ligases/genética , Ácido Abscísico/metabolismo , Cromossomos de Plantas , Etilenos/metabolismo , Frutas/crescimento & desenvolvimento , Duplicação Gênica , Perfilação da Expressão Gênica , Genoma de Planta , Ácidos Indolacéticos/metabolismo , Filogenia , Prunus persica/classificação , Prunus persica/crescimento & desenvolvimento , Ubiquitina-Proteína Ligases/metabolismo
15.
Plant Sci ; 283: 116-126, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128681

RESUMO

Ethylene response factors (ERFs) are known to regulate fruit ripening. However, the ERF regulatory networks are not clear. In this study, we have shown that peach (Prunus persica) PpeERF2 regulates fruit ripening through suppressing the expression of two ABA biosynthesis genes (PpeNCED2, PpeNCED3) and a cell wall degradation gene (PpePG1). The transcript levels of PpeERF2 in fruit were opposite to that of PpeNCED2, PpeNCED3 and PpePG1 during ripening and in response to various ripening treatments. PpeERF2 was found to bind to the PpeNCED2, PpeNCED3 and PpePG1 promotors as demonstrated by yeast one-hybrid (Y1H) and EMSA assays; and further found to repress the promoter activities of the three genes in tobacco leaf tissues after Agrobacterium infiltration. Taken together, these results provide new information for a better understanding of the crosstalk network between ethylene signaling, cell wall degradation and ABA biosynthesis during fruit ripening.


Assuntos
Ácido Abscísico/biossíntese , Parede Celular/metabolismo , Frutas/metabolismo , Proteínas de Plantas/fisiologia , Prunus persica/metabolismo , Proteínas Repressoras/fisiologia , Ácido Abscísico/metabolismo , Clonagem Molecular , Ensaio de Desvio de Mobilidade Eletroforética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Prunus persica/genética , Prunus persica/crescimento & desenvolvimento , Prunus persica/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
16.
Hortic Res ; 6: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729009

RESUMO

The plant hormone ethylene regulates ripening in climacteric fruits. The phytohormone abscisic acid (ABA) affects ethylene biosynthesis, but whether ethylene influences ABA biosynthesis is unknown. To explore this possibility, we investigated the interactions between the ABA biosynthesis genes PpNCED2/3 and the ethylene response transcription factor PpERF3 in peach fruit. The ABA content increased during fruit maturation and reached a peak at stage S4 III. The increase was greatly inhibited by the ethylene inhibitor 1-MCP, which also suppressed PpERF3 expression. PpERF3 shared a similar expression profile with PpNCED2/3, encoding a rate-limiting enzyme involved in ABA biosynthesis, during fruit ripening. A yeast one-hybrid assay suggested that the nuclear-localized PpERF3 might bind to the promoters of PpNCED2/3. PpERF3 increased the expression of PpNCED2/3 as shown by dual-luciferase reporters, promoter-GUS assays and transient expression analyses in peach fruit. Collectively, these results suggest that ethylene promotes ABA biosynthesis through PpERF3's regulation of the expression of ABA biosynthesis genes PpNCED2/3.

17.
BMC Genomics ; 19(1): 846, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486776

RESUMO

BACKGROUND: The green peach aphid (GPA), Myzus persicae (Sülzer), is a widespread phloem-feeding insect that significantly influences the yield and visual quality of peach [Prunus persica (L.) Batsch]. Single dominant gene (Rm3)-based resistance provides effective management of this invasive pest, although little is known about the molecular responses of plants to GPA feeding. RESULTS: To illustrate the molecular mechanisms of monogenic resistance in peach to young tissue-infecting GPAs, aphid-resistant/aphid-susceptible peach lines from a segregating population with Rm3/rm3 and rm3/rm3 genotypes were infested with GPAs for 3 to 72 h. Transcriptome analysis of the infested tissues identified 3854 differentially expressed genes (DEGs). Although the majority of the DEGs in the resistant line also responded to aphid attack in the susceptible line, the overall magnitude of change was greater in the resistant line than in the susceptible line. The enriched gene ontology of the 3854 DEGs involved in plant defence responses included redox situation, calcium-mediated signalling, transcription factor (e.g., WRKY, MYB, and ERF), MAPK signalling cascade, phytohormone signalling, pathogenesis-related protein, and secondary metabolite terms. Of the 53 genes annotated in a 460 kb interval of the rm3 locus, seven genes were differentially expressed between the aphid-resistant and aphid-susceptible peach lines following aphid infestation. CONCLUSIONS: Together, these results suggest that the Rm3-dependent resistance relies mainly on the inducible expression of defence-related pathways and signalling elements within hours after the initiation of aphid feeding and that the production of specific secondary metabolites from phenylpropanoid/flavonoid pathways can have major effects on peach-aphid interactions.


Assuntos
Afídeos/fisiologia , Resistência à Doença/genética , Loci Gênicos , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Prunus persica/genética , Prunus persica/parasitologia , Transcriptoma/genética , Animais , Cromossomos de Plantas/genética , Análise por Conglomerados , Comportamento Alimentar , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Estudos de Associação Genética , Fenótipo , Doenças das Plantas/genética , Brotos de Planta/genética , Prunus persica/imunologia , Reprodutibilidade dos Testes , Análise de Sequência de RNA
18.
J Exp Bot ; 66(22): 7031-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26307136

RESUMO

High concentrations of indole-3-acetic acid (IAA) are required for climacteric ethylene biosynthesis to cause fruit softening in melting flesh peaches at the late ripening stage. By contrast, the fruits of stony hard peach cultivars do not soften and produce little ethylene due to the low IAA concentrations. To investigate the regulation of IAA accumulation during peach ripening [the transition from stage S3 to stage S4 III (climacteric)], a digital gene expression (DGE) analysis was performed. The expression patterns of auxin-homeostasis-related genes were compared in fruits of the melting flesh peach 'Goldhoney 3' and the stony hard flesh peach 'Yumyeong' during the ripening stage. It is revealed here that a YUCCA flavin mono-oxygenase gene (PpYUC11, ppa008176m), a key gene in auxin biosynthesis, displayed an identical differential expression profile to the profiles of IAA accumulation and PpACS1 transcription: the mRNA transcripts increased at the late ripening stage in melting flesh peaches but were below the limit of detection in mature fruits of stony hard peaches. In addition, the strong association between intron TC microsatellite genotypes of PpYUC11 and the flesh texture (normal or stony hard) is described in 43 peach varieties, indicating that this locus may be responsible for the stony hard phenotype in peach. These findings support the hypothesis that PpYUC11 may play an essential role in auxin biosynthesis during peach fruit ripening and is a candidate gene for the control of the stony hard phenotype in peach.


Assuntos
Frutas/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Oxigenases/metabolismo , Proteínas de Plantas/metabolismo , Prunus persica/crescimento & desenvolvimento , Prunus persica/genética , Genes de Plantas , Homeostase , Oxigenases/genética , Proteínas de Plantas/genética
19.
Nat Genet ; 45(1): 59-66, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23179022

RESUMO

Oranges are an important nutritional source for human health and have immense economic value. Here we present a comprehensive analysis of the draft genome of sweet orange (Citrus sinensis). The assembled sequence covers 87.3% of the estimated orange genome, which is relatively compact, as 20% is composed of repetitive elements. We predicted 29,445 protein-coding genes, half of which are in the heterozygous state. With additional sequencing of two more citrus species and comparative analyses of seven citrus genomes, we present evidence to suggest that sweet orange originated from a backcross hybrid between pummelo and mandarin. Focused analysis on genes involved in vitamin C metabolism showed that GalUR, encoding the rate-limiting enzyme of the galacturonate pathway, is significantly upregulated in orange fruit, and the recent expansion of this gene family may provide a genomic basis. This draft genome represents a valuable resource for understanding and improving many important citrus traits in the future.


Assuntos
Citrus sinensis/genética , Genoma de Planta , Quimera , Mapeamento Cromossômico , Citrus sinensis/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ordem dos Genes , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Filogenia , Vitaminas/metabolismo
20.
Mol Genet Genomics ; 285(2): 151-61, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21153735

RESUMO

The nucleotide-binding site leucine-rich repeat (NBS-LRR) genes are the largest class of disease resistance genes in plants. However, our understanding of the evolution of NBS-LRR genes in Rutaceae fruit crops is rather limited. We report an evolutionary study of 103 NBS-encoding genes isolated from Poncirus trifoliata (trifoliate orange), Citrus reticulata (tangerine) and their F(1) progeny. In all, 58 of the sequences contained a continuous open reading frame. Phylogenetic analysis classified the 58 NBS genes into nine clades, eight of which were genus specific. This was taken to imply that most of the ancestors of these NBS genes evolved after the genus split. The motif pattern of the 58 NBS-encoding genes was consistent with their phylogenetic profile. An extended phylogenetic analysis, incorporating citrus NBS genes from the public database, classified 95 citrus NBS genes into six clades, half of which were genus specific. RFLP analysis showed that citrus NBS-encoding genes have been evolving rapidly, and that they are unstable when passed through an intergeneric cross. Of 32 NBS-encoding genes tracked by gene-specific PCR, 24 showed segregation distortion among a set of 94 F(1) individuals. This study provides new insight into the evolution of Rutaceae NBS genes and their behaviour following an intergeneric cross.


Assuntos
Produtos Agrícolas/genética , Evolução Molecular , Frutas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas/genética , Rutaceae/genética , Sequência de Aminoácidos , Produtos Agrícolas/química , Frutas/química , Proteínas de Repetições Ricas em Leucina , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas/química , Rutaceae/química , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...